Pharmacological evaluation of a phenyl boronic acid derivative having antibacterial activity against S. aureus : Synthesis, biological activity, and ADME Studies
DOI:
https://doi.org/10.5281/zenodo.17897569Abstract
Boron-containing compounds have attracted considerable attention due to their unique chemical reactivity, biological versatility, and low toxicity. In this study, a phenylboronic acid (PBA) derivative (3-((3,5-ditert-butyl-2-hydroxybenzylidene)amino)phenyl)boronic, 3,5-Tb-Bmin) was synthesized and characterized using elemental analysis and spectroscopic techniques. The in vitro antibacterial activity of the compound 3,5-Tb-Bmin against Staphylococcus aureus was determined by the broth microdilution method (BMD) . The results revealed that the synthesized boron derivative exhibited significant inhibitory activity, suggesting its potential as a promising antibacterial agent. Furthermore, ADME (Absorption, Distribution, Metabolism, and Excretion) analysis was performed to assess the pharmacokinetic behavior and drug-likeness of the compound. The results indicated favorable oral bioavailability, acceptable lipophilicity, and compliance with Lipinski’s rule of five. These findings demonstrate that the synthesized boronic acid derivative could serve as a potential lead compound for the development of novel boron-based antibacterial drugs.
References
Hall, D. G. (Ed.). Boronic acids: Preparation and applications in organic synthesis and medicine. Wiley-VCH,2005.
Kitano, S., Koyama, Y., Kataoka, K., Okano, T., & Sakurai, Y, Glucose-responsive polymer bearing a phenylboronic acid moiety for insulin-release systems. Journal of Controlled Release, 1991.16(3): p. 195–201. https://doi.org/10.1016/0168-3659(91)90076-Q
Xu, R., & Wang, S. The role of halogenation in drug design and development. Chemical Reviews, 2020.120(20): p. 10310–10391. https://doi.org/10.1021/acs.chemrev.0c00174
Wang, H., Wu, C., & Zhao, Z. Boronic acids in medicinal chemistry: From chemical biology to drug design. European Journal of Medicinal Chemistry, 2018. 156, p. 342–364. https://doi.org/10.1016/j.ejmech.2018.07.013
Baker, S. J., Tomsho, J. W., & Benkovic, S. J. Boron-containing inhibitors of synthetase and ligase enzymes in amino acid biosynthesis. Chemical Society Reviews, 2012. 41(13), p. 4860–4868. https://doi.org/10.1039/c2cs35032a
Hecker, S. J., Reddy, K. R., Lomovskaya, O., Griffith, D. C., Rubio-Aparicio, D., Nelson, K.,& Dudley, M. N. Discovery of a cyclic boronic acid β-lactamase inhibitor (vaborbactam) for the treatment of carbapenem-resistant Enterobacteriaceae. Journal of Medicinal Chemistry, 2015. 58(9), p. 3682–3692. https://doi.org/10.1021/jm501991a
Tong, SYC., Davis, JS., Eichenberger, E., Holland, TL., Fowler, VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015. 28(3) : p. 603-61. doi: 10.1128/CMR.00134-14.
Otto, M. Staphylococcal biofilms. Microbiol Spectr. 2018. 6 (4):10.1128/microbiolspec.g pp3-0023-2018. doi: 10.1128/microbiolspec.GPP3-0023-2018.
Foster, TJ. (Antibiotic resistance in Staphylococcus aureus: Current status and future prospects. FEMS Microbiol Rev. 2017.41(3), p. 430-449. doi: 10.1093/femsre/fux007.
Archer, NK., Mazaitis, MJ., Costerton, JW., Leid, JG., Powers, ME., Shirtliff, ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011.2(5), p. 445-59. doi: 10.4161/viru.2.5.17724.
Li, X., Nikaido, H. Efflux-mediated drug resistance in bacteria: an update. Drugs. 2009.69 (12), p. 1555–1623. doi: 10.2165/11317030-000000000-00000
Krátký M. Novel sulfonamide derivatives as a tool to combat methicillin-resistant Staphylococcus aureus. Future Med Chem. 2024.16(6) : p.545-562. doi: 10.4155/fmc-2023-0116.
Clinical and Laboratory Standards Institute (CLSI). M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition. CLSI Document M07. Wayne, PA: CLSI, 2021.
Sert, S., Sentürk, O. S., Özdemir, Ü., Karacan, N., & Ugur, F. Synthesis and characterization of the products from reaction of metal carbonyls [M(CO)6 (M = Cr, Mo, W), Re(CO)5Br, Mn(CO)3Cp] with salicylaldehyde methanesulfonylhydrazone. Journal of Coordination Chemistry, 2004, 57(3): p. 183–188. https://doi.org/ 10.1080 /00958970410001679633.
Gündüzalp, AB., Parlakgümüs, G., Uzun, D., Özmen, ÜÖ ., Özbek, N., Sari, M.,Tunç, T., Carbonic anhydrase inhibitors: Synthesis, characterization and inhibition activities of furan sulfonylhydrazones against carbonic anhydrase I (hCAıı). Journal of Molecular Structure, 2004.105 :p. 332-340. https://doi.org /10.1016/j.molstruc.2015.10.054.
Aydiner, B., Sahin, Ö., Çakmaz, D., Kaplan, G., Kaya, K., Özdemir, Ü. Ö., Seferoglu, N., & Seferoglu, Z. A highly sensitive and selective fluorescent turn-on chemosensor bearing a 7-diethylaminocoumarin moiety for the detection of cyanide in organic and aqueous solutions. New Journal of Chemistry, 2020. 44(44): p. 19155–19165. https://doi.org/10.1039/D0NJ03994D.
Ozmen, U.O., Alyar, S, Ayan, E.B., Canbolat, N., Hamurcu, F., Alyar, H., Muhammet, S.M., Kaya, K. Sulfonyl hydrazone derivatives containing acetonaphtone as anticholinesterase inhibitors for the treatment of Alzheimer's: X-ray single-crystal analysis, and multifaced theoretical calculations, Journal of Molecular Structure, (2024). 1318: p. 139311. https://doi.org /10.1016/j.molstruc.2024.13931.
Özbek, N., Özdemir, Ü. Ö., Altun, A. F., & Sahin, E. Sulfonamide-derived hydrazone compounds and their Pd (II) complexes: Synthesis, spectroscopic characterization, X-ray structure determination, in vitro antibacterial activity and computational studies. Journal of Molecular Structure, 2019. 1196:p. 707–719. https://doi.org/10.1016/j.molstruc.2019.07.081.
Ozdemir, U. O., Ozbek, N., Genc, Z. K., Ilbiz, F., & Gündüzalp, A. B. New bioactive silver(I) complexes: Synthesis, characterization, anticancer, antibacterial and anticarbonic anhydrase II activities. Journal of Molecular Structure, 2017. 1138:p. 55–63. https://doi.org/10.1016/j.molstruc.2017.02.031.
Ozmen, U. O., Tuzun, B., Ayan, E. B., & Cevrimli, B. S. Eco-friendly and potential choline esterase enzyme inhibitor agent sulfonyl hydrazone series: Synthesis, bioactivity screening, DFT, ADME properties, and molecular docking study. Journal of Molecular Structure, 2023.1286: p.135668. https://doi.org/10.1016/j.molstruc.2023.135668.
Alyar, S., Alyar, H., Özmen, U. O., Aktas, O., & Erdem, K. Biochemical properties of Schiff bases derived from FDA-approved sulfa drugs: Synthesis, ADME/molecular docking studies, and anticancer activity. Journal of Molecular Structure, 2023. 1293: p . 136408. https://doi.org/10.1016/j.molstruc.2023.136408.
Ibrahimova, N., Çete, S., Anakok, D. A., Ozmen, U. O., Gündüzalp, A.B., Oztürk, A., Aydemir, I. Synthesis of new sulfa drugs containing FDA-approved sulfa pyridine:Evaluation of cholinesterase inhibition, antimicrobial, antibiofilm, anticancer, and antioxidant activities, along with theoretical calculation and molecular docking study Journal of Molecular Structure, 2025. 1335: p.142013. https://doi.org/10.1016/j.molstruc.2025.142013.
Daina, A., Michielin, O., & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 2017. 7: p. 42717. https://doi.org/10.1038/srep42717.
S.S. Hassan, W.D. Zhang, H. Jin, S. H. Basha, S.V.S. Sasi Priya, J. Biomol. Struct. Dyn. 2020.40(9) :p. 1-15.
Lipinski, C.A., et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 2001. 46(1-3) : p. 3–26.
Ghose, A.K., et al. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. Journal of Combinatorial Chemistry, 1999. 1(1): p. 55–68.
Veber, D.F., et al. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 2002. 45(12) : p. 2615–2623.
Muegge, I., et al. Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 2001. 44(12): p. 1841–1846.
Mia, X. L., Chen, C., & Yang, J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacologica Sinica, 2005.26(4) : p. 500-512.
Mermer, A., Bayrak, H., Alyar, S., Alagumuthu, M. Molecular docking studies on enzyme–ligand interactions. Journal of Molecular Structure, 2020. 1208: p. 127891. https://doi.org/10.1016/j.molstruc.2020.127891.
J. Wójcikowski, P. J. Danek, A. Basińska-Ziobroń, R. Pukło, W. A. Daniel, Pharmacol. Reports,(2020.72: p. 612–621.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 MW Journal of Science

This work is licensed under a Creative Commons Attribution 4.0 International License.
